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ABSTRACT
We develop an age of infection model with heterogeneous mixing
in which indirect pathogen transmission is considered as a goodway
to describe contact that is usually considered as direct and we also
incorporate virus shedding as a function of age of infection. The sim-
plest form of SIRP epidemic model is introduced and it serves as a
basis for the age of infection model and a 2-patch SIRP model where
the risk of infection is solely dependent on the residence times and
other environmental factors. The computation of the basic reproduc-
tion numberR0, the initial exponential growth rate and the final size
relation is done and by mathematical analysis, we study the impact
of patches connection and use the final size relation to analyse the
ability of disease to invade over a short period of time.
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1. Introduction

Epidemic model of infectious diseases had been extensively investigated by proposing and
investigatingmathematicalmodels ([4–6, 10, 19, 22] and references therein). Diseases such
as cholera and some airborne infections are pathogenic microorganism diseases that are
usually transmitted directly via host to host [19] and/or indirectly by virus transferred
through objects such as contaminated hands or objects such as shelves and lump and envi-
ronments [1, 4, 8, 20]. Pathogen sheds by infected individuals may stay outside of human
hosts for a long period of time. However, alternative transmission pathways as a result of
the behaviour of host may constitute to the spread of infection, such as drinking contami-
nated water, touching handles that have been exposed to a virus, eating contaminated food
and so on [19]. Brauer [4] proposed an SIVR epidemic model with homogeneous mixing,
which is an extension of the SIR model by the addition of a pathogen compartment V to
describe the indirect transmission pathway (host–source–host). The basic reproduction
number and the final size relation was derived and investigated to determine the impact
of indirect transmission pathway on disease spread. Similarly, Derdei Bichara et al. [10]
proposed an SIR epidemic model in two patches with residence times which describes
patches with residents who spent a proportion of their time in different patches to analyse
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the direct transmission pathway ( host–host). They derived the basic reproduction num-
ber, final size relation and investigated how residence times influence them. Tien and Earn
[21] developed an SIWR disease model which extended the SIR model by the addition of
a compartmentW that describes direct and indirect transmission pathway.

We have based most mathematical results in this paper on the final size relation of
epidemicmodels in an heterogeneous environment. This relation had been extensively dis-
cussed in [2–4, 10, 13] using different models to predict how worst an epidemic could be
during a disease outbreak. For example, consider a simple compartmental model, which
comes with simple assumptions on rates of flow between different classes of individuals
in the population (the special case of the proposed model by Kermack and McKendrick
[15–17]) given as

Ṡ = −βIS,

İ = βIS − ρI,

Ṙ = ρI.

(1)

The final size relation to the simple model in Equation (1) is

log
S0
S∞

= β

∫ ∞

0
I(t) dt,

= βN
ρ

[
1 − S∞

N

]
,

= R0

[
1 − S∞

N

]
, (2)

where S0 denotes the initial size of the susceptible class,N the size of the entire population,
β effective contact rate, ρ removed rate, and R0 = (βN/ρ) the basic reproduction num-
ber. The first infectious individual is expected to infect R0 = (βN/ρ) individuals and this
determines if an epidemic will occur at all. The infection dies out whenever R0 < 1, and
an epidemic occur wheneverR0 > 1. Equation (2) which is known as the final size relation
gives an estimate of the total number of infections over the course of the epidemic from
the parameter in the model [3, 4], and can similarly show the relationship between the
basic reproduction number and the size of the epidemic. The final size (N − S∞) is usu-
ally described in terms of the attack rate/ratio (1 − S∞/N). Note that the final size relation
in Equation (2) can be generalized to epidemic model with more complex compartments
than the simple model in Equation (1). Papers [2–4, 10, 13] extensively discussed details
of age of infection models and their final size relations, and we will use these techniques to
derive the final size relations throughout the paper.

We intend in this work to incorporate an epidemic model with age of infection and
indirect transmission pathway in which pathogen is shed by infected individuals into the
environment, acquired by susceptible individuals from the environment, and transmitted
in an heterogeneous mixing environment.We will further investigate the nature of the epi-
demic when variable virus shedding rate and residence time are taken into consideration.
A Lagrangian method is used to monitor the place of residence of each population at all
times [6, 9–11]. We propose that this may be an alternative way to study disease epidemic
in an heterogeneous mixing environment. The rest of the paper is structured as follows.
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In Section 2, we introduce the age of infection model in an heterogeneous mixing settings
and analyse the model succinctly. The analysis of the age of infection model follows sim-
ilar steps from the simpler version analysed in Section 2.1. We describe in Section 3 how
variable pathogen shedding rates are incorporated. In Section 4, we formulate a 2-patch
model with residence time and determine the nature of the epidemic when populations
in one patch spend some of their time in another patch. We analyse the patchy model
for different scenarios numerically in the last part of Section 4 and devote Section 5 to a
summarized conclusion. Note that the same analytic approach, a standard way to analyse
disease transmission models will be used in each section.

2. A two-group age of infectionmodel with heterogeneousmixing

We consider two subpopulations of sizes N1, N2, each divided into susceptibles S1 and S2
and infectives I1 and I2 with a pathogen class P. We assume that Susceptible individuals
become infected only through contact with the pathogen sheds by infectives. Pathogen P
is shed by infected individuals I1 and I2 at a rate r1 and r2, respectively, as in [14, 19]. The
model assumes that epidemic occurs within a short period of time.

Considering the age of infection, we define ϕ1(t) and ϕ2(t) as total infectivity in classes
I1 and I2 at time t, respectively, ϕ10(t) and ϕ20(t) represent the total infectivity at time t
of all individuals already infected at time t=0, A1(τ ) and A2(τ ) are the mean infectivity
of individuals in classes I1 and I2 at age of infection τ and �(τ) the fraction of pathogen
remaining τ time units after having been shed by an infectious individual. This is an exten-
sion of [4] from homogeneous mixing to heterogeneous mixing, and we therefore have the
equation as in [13] as

S′
1(t) = −β1S1(t)P(t),

ϕ1(t) = ϕ10(t) +
∫ ∞

0
[−S′

1(t − τ)]A1(τ ) dτ ,

S′
2(t) = −β2S2(t)P(t),

ϕ2(t) = ϕ20(t) +
∫ ∞

0
[−S′

2(t − τ)]A2(τ ) dτ ,

P(t) =
∫ ∞

0
(r1ϕ1(t − τ) + r2ϕ2(t − τ)) �(τ) dτ .

(3)

We can replace Equation (3) by the limit equation

S′
1(t) = −β1S1(t)P(t),

ϕ1(t) =
∫ ∞

0
[−S′

1(t − τ)]A1(τ ) dτ ,

S′
2(t) = −β2S2(t)P(t),

ϕ2(t) =
∫ ∞

0
[−S′

2(t − τ)]A2(τ ) dτ ,

P(t) =
∫ ∞

0
(r1ϕ1(t − τ) + r2ϕ2(t − τ)) �(τ) dτ ,

(4)
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with a choice of initial function ϕ10(t) and ϕ20(t) to find the equilibria. Asymptotic
theory of integral equations in [18] assures that the asymptotic behaviour of (3) is syn-
onymous to that of the limit equation (4) for every initial function with limt→∞ ϕ10(t) =
limt→∞ ϕ20(t) = 0 [13, 18]. We assume that

∫ ∞
0 �(τ) dτ < ∞, where the function �

is monotone non-increasing with �(0) = 1, and that
∫ ∞
0 A(τ ) dτ < ∞, where A is not

necessarily non-increasing.
In order to evaluate the basic reproduction number, the initial exponential growth rate,

and the final size relation in terms of the model parameters, it makes sense to start with the
simplest form of the limit equation (4) as was done in [2, 12, 13] by considering a special
case in Section 2.1. For this special case, we assume that there is no age of infection, so that
we approximate the model (4) by a compartmental model in (5)

2.1. A special case: heterogeneousmixing and indirect transmission for simple
SIRP epidemicmodel

The age-of-infectionmodel includesmodels withmultiple infective. For example, consider
the standard SIRP epidemic model with pathogen P being shed by infected individuals I1
and I2 at a rate r1 and r2, respectively, and these pathogen decay at rate δ. Pathogen shed
outside of the host organism can persist and reproduce but the decay rate δ is bigger than
the reproduction rate [14, 19]. Infected populations are removed at rate α. The indirect
transmission model is therefore written as

S′
1 = −β1S1P,

I′1 = β1S1P − αI1,

R′
1 = αI1,

S′
2 = −β2S2P,

I′2 = β2S2P − αI2,

R′
2 = αI2,

P′ = r1I1 + r2I2 − δP,

(5)

with initial conditions

S1(0) = S10, S2(0) = S20, I1(0) = I10, I2(0) = I20, P(0) = P0, R1(0)

= R2(0) = 0,

in a population of constant total size N = N1 + N2 where

N1 = S1 + I1 + R1 = S10 + I10 and N2 = S2 + I2 + R2 = S20 + I20.

Again,model (5) is an extension of [4] fromhomogeneousmixing to heterogeneousmixing
in the population (Table 1) .

Model (5) will be analysed using the method of Kermack–McKendrick epidemic model
[4, 5].

Lemma2.1: Let f (t) be a non-negativemonotone non-increasing continuously differentiable
function such that as t → ∞, f (t) → f∞ ≥ 0, f ′ → 0.
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Table 1. Model variables, parameters and their descriptions.

Variables Description

Si Population of susceptible individuals
Ii Population of infected individuals
Ri Population of recovered individuals
P Pathogen shed by infected individuals

Parameters Description
βi Effective contact rate
α Removed rate for infected individuals
ri Pathogen shedding rate for infected individuals
δ Infectivity loss rate for pathogen

Note: For all i= 1,2.

Summation of equations S1 and I1 in Equation (5) gives

(S1 + I1)′ = −αI1 ≤ 0.

We can see that (S1 + I1) decreases to a limit, and by Lemma 2.1 we could show that its
derivative approaches zero, from which we can infer that I1∞ = limt→∞ I1(t) = 0.

Integrate this equation to have α
∫ ∞
0 I1(t) dt = S1(0) + I1(0) − S1(∞) = N1(0) −

S1(∞),
∫ ∞

0
I1(t) dt = N1(0) − S1(∞)

α
, (6)

which implies that
∫ ∞
0 I1(t) dt < ∞.

Similarly, sum S2 and I2 in Equation (5) as

(S2 + I2)′ = −αI2 ≤ 0,

and by Lemma 2.1 and integrating, we have

∫ ∞

0
I2(t) dt = N2(0) − S2(∞)

α
, (7)

which implies that
∫ ∞
0 I2(t) dt < ∞.

2.1.1. Reproduction numberR0
Here, we use the next generation matrix approach [22] to find the basic reproduction
number. Note that we have three infectious classes I1, I2,P, and the jacobian matrix of
Fi = (F1,F2,F3), evaluated at the disease-free equilibrium point

DFE = (S10, 0, 0, S20, 0, 0, 0) = (N1(0), 0, 0,N2(0), 0, 0, 0) is given by

F =
(

∂Fi

∂xj

)
i,j

=
⎛
⎝0 0 β1N1(0)
0 0 β2N2(0)
0 0 0

⎞
⎠ ,

where xj = I1, I2,P for j=1,2,3 and i=1,2,3.
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The jacobianmatrix ofVi = (V1,V2,V3), evaluated at the disease-free equilibriumpoint
DFE is

V =
(

∂Vi

∂xj

)
i,j

=
⎛
⎝ α 0 0

0 α 0
−r1 −r2 δ

⎞
⎠ ,

FV−1 =

⎛
⎜⎜⎜⎜⎝

β1N1(0)r1
αδ

β1N1(0)r2
αδ

β1N1(0)
δ

β2N2(0)r1
αδ

β2N2(0)r2
αδ

β2N2(0)
δ

0 0 0

⎞
⎟⎟⎟⎟⎠ .

Remark 2.1: Since we can not calculate the basic reproduction number for our two-group
model (5) by knowing secondary infections, we therefore use the method of next genera-
tion matrix in [22] to find the basic reproduction number as the dominant eigenvalues of
FV−1 (the spectral radius of the matrix FV−1). And it is given as

R0 = r1β1N1

αδ
+ r2β2N2

αδ
.

R0 can be written asR0 = β1R1 + β2R2, whereR1 = r1N1/α1δ andR2 = r2N2/α2δ.

The first term in this expression represents secondary infections caused indirectly
through the pathogen since a single infective I1 sheds a quantity r1 of the pathogen per
unit time for a time period 1/α and this pathogen infects β1N1 susceptible individuals per
unit time for a time period 1/δ, while the second term represents secondary infections
caused indirectly through the pathogen since a single infective I2 sheds a quantity r2 of the
pathogen per unit time for a time period 1/α and this pathogen infects β2N2 susceptible
individuals per unit time for a time period 1/δ. The following easily proved Theorem will
be used to summarize the benefit of the basic reproduction numberR0.

Theorem 2.2: For system (5), the infection dies out whenever R0 < 1 and epidemic occur
wheneverR0 > 1.

2.1.2. The initial exponential growth rate
The initial exponential growth rate is a quantity that can be compared with experi-
mental data [7, 12]. We can linearize the model (5) about the disease-free equilibrium
S1 = N1, I1 = R1 = 0, S2 = N2, I2 = R2 = P = 0 by letting u1 = N1 − S1, u2 = N2 − S2
to obtain the linearization

u′
1 = β1N1P,

I′1 = β1N1P − αI1,

R′
1 = αI1,

u′
2 = β2N2P,

I′2 = β2N2P − αI2,

R′
2 = αI2,

P′ = r1I1 + r2I2 − δP.

(8)
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The equivalent characteristic equation is given by

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−λ 0 0 0 0 0 β1N1(0)
0 −α − λ 0 0 0 0 β1N1(0)
0 α −λ 0 0 0 0
0 0 0 −λ 0 0 β2N2(0)
0 0 0 0 −α − λ 0 β2N2(0)
0 0 0 0 α −λ 0
0 r1 0 0 r2 0 −δ − λ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0.

This equation can be reduced to a product of four factors and a third degree polynomial
equation

(λ4)det

⎛
⎝−α − λ 0 β1N1(0)

0 −α − λ β2N2(0)
r1 r2 −δ − λ

⎞
⎠ = 0.

The initial exponential growth rate is the largest root of this third degree equation and it
reduces to

G(λ) = (α + λ)2(δ + λ) − (α + λ) (β1r1N1 + β2r2N2) , (9)

G(λ) = (α + λ)2(δ + λ) − (α + λ)αδR0 = 0. (10)

We can measure the initial exponential growth rate, and if the measured value is ξ , then
from Equation (10) we obtain

(α + ξ)2(δ + ξ) − (α + ξ)αδR0 = 0, (11)

and we have

R0 = (α + ξ)(δ + ξ)

αδ
. (12)

Equation (12) gives a way to estimate the basic reproduction number from known quan-
tities, and ξ = 0 in Equation (12) corresponds to R0 = 1, which confirms the proper
threshold behaviour for the calculated R0. We can obviously see that λ > 0 in Equation
(10) is equivalent to R0 > 1. Estimating the final epidemic size after an epidemic has
passed is possible, and this also makes it feasible to choose values of α and β1β2 that satisfy
Equation (11) such that the simulations of the model (5) give the observed final size. In
summary, we have the following Theorem;

Theorem 2.3: For eigenvalue λ > 0 in Equation (10), we have R0 > 1 denoting epidemic
occurrence, and ξ = 0 in Equation (12) which corresponds to R0 = 1 also confirms the
proper threshold behaviour forR0.

2.1.3. The final size relation
The final epidemic size is achieved from the solutions of the final size relationship which
gives an estimate of the total number of infections and the epidemic size for the period
of the epidemic from the parameters in the model [2, 10]. The approach in [2–4] is used
to find the final size relation in order to evaluate the number of disease cases and disease
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deaths in terms of themodel parameters. It is assumed that the total population sizesN1,N2
of both groups are constant.

Integrate the equation for S1 and S2 in Equation (5);

log
Si0
Si∞

= βi

∫ ∞

0
P(t) dt ∀i = 1, 2. (13)

Integrate the linear equation for P in Equation (5) to have

P(t) = P0 e−δt + r1
∫ t

0
e−δ(t−s)I1(s) ds + r2

∫ t

0
e−δ(t−s)I2(s) ds. (14)

Next, we need to show that

lim
t→∞

∫ t

0
e−δ(t−s)Ii(s) ds = lim

t→∞

∫ t
0 e

δsIi(s) ds
eδt

= 0 ∀i = 1, 2. (15)

If the integral in the numerator of (15) is bounded, this is obvious; and if unbounded,
l’Hospital’s rule shows that limt→∞ Ii(t)/δ = 0 [4], and Equation (14) implies that

P∞ = lim
t→∞ P(t) = 0.

Integrate Equation (14), and interchange the order of integration, then use Equations (6)
and (7) to have ∫ ∞

0
P(t) dt = r1

δ

∫ ∞

0
I1(t) dt + r2

δ

∫ ∞

0
I2(t) dt, (16)

which implies that
∫ ∞
0 P(t) dt < ∞.

Substitute Equation (16) into Equation (13) to have

log
Si0
Si∞

= βi

(
r1
δ

∫ ∞

0
I1(t) dt + r2

δ

∫ ∞

0
I2(t) dt + 2P0

δ

)
, ∀ i = 1, 2,

and now the final size relation

log
Si0
Si∞

= βi

(
r1N1

α1δ

{
1 − S1(∞)

N1

}
+ r2N2

α2δ

{
1 − S2(∞)

N2

}
+ 2P0

δ

)
,

= βi

(
R1

{
1 − S1(∞)

N1

}
+ R2

{
1 − S2(∞)

N2

}
+ 2P0

δ

)
, ∀ i = 1, 2,

is from the substitution of Equations (6) and (7) which implies Si∞ > 0. If the outbreak
begins with no contact with pathogen, P0 = 0, and then the final size relation is written as

log
Si0
Si∞

= βi

(
R1

{
1 − S1(∞)

N1

}
+ R2

{
1 − S2(∞)

N2

})
∀ i = 1, 2.

Note that the total number of infected populations over the period of the epidemic in patch
1 and 2 are, respectively, N1 − S1∞ and N2 − S2∞ which are always described in terms of
the attack rate (1 − S1∞/N1) and (1 − S2∞/N2) as in [3].

Following the steps used in Section 2.1, we can compute the reproduction number, the
exponential growth rate and the final size relation from Equation (4) as;
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2.2. Reproduction numberR0

We have 3 infected classes ϕ1, ϕ2, P and following the approach of van den Driessche and
Watmough [22], the next generation matrix is

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 β1N1

∫ ∞

0
A1(τ ) dτ

0 0 β2N2

∫ ∞

0
A2(τ ) dτ

r1
∫ ∞

0
�(τ) dτ r2

∫ ∞

0
�(τ) dτ 0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

andR0 is the largest root of

det

⎡
⎢⎢⎢⎢⎢⎢⎣

−λ 0 β1N1

∫ ∞

0
A1(τ ) dτ

0 −λ β2N2

∫ ∞

0
A2(τ ) dτ

r1
∫ ∞

0
�(τ) dτ r2

∫ ∞

0
�(τ) dτ −λ

⎤
⎥⎥⎥⎥⎥⎥⎦

= 0. (17)

The basic reproduction number for the model (4), which is the number of secondary
infections caused by a single infective in a totally susceptible population is given by

R0 = r1β1N1

∫ ∞

0
A1(τ ) dτ

∫ ∞

0
�(τ) dτ + r2β2N2

∫ ∞

0
A2(τ ) dτ

∫ ∞

0
�(τ) dτ , (18)

which can be written as β1R1 + β2R2, where

R1 = r1N1

∫ ∞

0
A1(τ ) dτ

∫ ∞

0
�(τ) dτ ,

represent secondary infections caused by an infectious individual in I1 indirectly by the
pathogen shed and

R2 = r2N2

∫ ∞

0
A2(τ ) dτ

∫ ∞

0
�(τ) dτ ,

represent secondary infections caused by an infectious individual in I2 indirectly by the
pathogen shed. We summarize the analysis and impacts of R1 and R2 in the following
Theorem.

Theorem 2.4: Disease dies out wheneverR0 < 1 (i.e.R1 < 1 andR2 < 1) and epidemic
occur wheneverR0 > 1 (i.e.R1 > 1 andR2 > 1).

2.3. The initial exponential growth rate

In order to avoid the difficulties caused by the fact that there is a three-dimensional sub-
space of equilibria ϕ1 = ϕ2 = P = 0 and following the approach of Fred [12], we include
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small birth rates in the equations for S1 and S2, and equivalent proportional natural death
rates in each of the compartment to give the system

S′
1(t) = μN1 − μS1 − β1S1(t)P(t),

ϕ1(t) =
∫ ∞

0
[−S′

1(t − τ)] e−μτA1(τ ) dτ ,

S′
2(t) = μN2 − μS2 − β2S2(t)P(t),

ϕ2(t) =
∫ ∞

0
[−S′

2(t − τ)] e−μτA2(τ ) dτ ,

P(t) =
∫ ∞

0
[r1ϕ1(t − τ) + r2ϕ2(t − τ)] e−μτ�(τ) dτ .

(19)

We then linearize Equation (19) about the disease-free equilibrium S1 = N1, ϕ1 = 0, S2 =
N2, ϕ2 = 0, P=0 by letting u1 = N1 − S1, u2 = N2 − S2 to obtain the linearization

u′
1(t) = −β1N1P − μu1,

v1(t) =
∫ ∞

0
β1N1P(t − τ) e−μτA1(τ ) dτ ,

u′
2(t) = −β2N2P − μu2,

v2(t) =
∫ ∞

0
β2N2P(t − τ) e−μτA2(τ ) dτ ,

P(t) =
∫ ∞

0
[r1v1(t − τ) + r2v2(t − τ)] e−μτ�(τ) dτ ,

(20)

and form the characteristic equation, which is the condition on λ that the linearization
have a solution u1 = u10 eλt , v1 = v10 eλt , u2 = u20 eλt , v2 = v20 eλt , P = u0 eλt ,

det

⎡
⎢⎢⎢⎢⎣

−(λ + μ) 0 0 0 −β1N1
0 −1 0 0 β1N1♥
0 0 −(λ + μ) 0 −β2N2
0 0 0 −1 β2N2♠
0 r1

∫ ∞

0
e−(λ+μ)τ�(τ) dτ 0 r2

∫ ∞

0
e−(λ+μ)τ�(τ) dτ −1

⎤
⎥⎥⎥⎥⎦ = 0,

where ♥ = ∫ ∞
0 e−(λ+μ)τA1(τ ) dτ and ♠ = ∫ ∞

0 e−(λ+μ)τA2(τ ) dτ .
We have a double root λ = −μ < 0, and the remaining roots of the characteristic

equation are the roots of

det

⎡
⎢⎢⎢⎢⎢⎣

−1 0 β1N1

∫ ∞

0
e−(λ+μ)τA1(τ ) dτ

0 −1 β2N2

∫ ∞

0
e−(λ+μ)τA2(τ ) dτ

r1
∫ ∞

0
e−(λ+μ)τ�(τ)dτ r2

∫ ∞

0
e−(λ+μ)τ�(τ) dτ −1

⎤
⎥⎥⎥⎥⎥⎦

= 0.

Since this is true for all sufficiently small μ > 0, we may let μ −→ 0 and conclude that in
a scenario where there is an epidemic, equivalent to an unstable equilibrium of the model,
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then the positive root of the characteristic equation

det

⎡
⎢⎢⎢⎢⎢⎢⎣

−1 0 β1N1

∫ ∞

0
e−λτA1(τ ) dτ

0 −1 β2N2

∫ ∞

0
e−λτA2(τ ) dτ

r1
∫ ∞

0
e−λτ�(τ) dτ r2

∫ ∞

0
e−λτ�(τ) dτ −1

⎤
⎥⎥⎥⎥⎥⎥⎦

= 0, (21)

is the initial exponential growth rate and this is

r1β1N1

∫ ∞

0
e−λτA1(τ ) dτ

∫ ∞

0
e−λτ�(τ) dτ

+ r2β2N2

∫ ∞

0
e−λτA2(τ ) dτ

∫ ∞

0
e−λτ�(τ) dτ = 1. (22)

We can obviously see from Equations (18) and (22) that epidemic occurs only if λ > 0
which is equivalent toR0 > 1. In summary, we have a simple Theorem as;

Theorem 2.5: Epidemic occur if and only if λ > 0, which is equivalent toR0 > 1.

2.4. The final size relation

Integrate the equations for S1 and S2 in Equation (4) to have

log
Si0
Si∞

= βi

∫ ∞

0
P(t) dt ∀ i = 1, 2. (23)

Interchanging the order of integration, using S1(u) and S2(u) for u<0, and by Lemma 2.1
to have ∫ ∞

0
ϕi(t) dt = [Ni − Si∞]

∫ ∞

0
Ai(τ ) dτ ∀ i = 1, 2,

∫ ∞

0
P(t) dt = r1

∫ ∞

0
ϕ1(τ )

∫ ∞

0
�(τ) dτ + r2

∫ ∞

0
ϕ2(τ )

∫ ∞

0
�(τ) dτ

= r1[N1 − S1∞]
∫ ∞

0
A1(τ ) dτ

∫ ∞

0
�(τ) dτ

+ r2[N2 − S2∞]
∫ ∞

0
A2(τ ) dτ

∫ ∞

0
�(τ) dτ .

Substitute into Equation (23) to have

log
Si0
Si∞

= βi

(
r1[N1 − S1∞]

∫ ∞

0
A1(τ ) dτ

∫ ∞

0
�(τ) dτ

+r2[N2 − S2∞]
∫ ∞

0
A2(τ ) dτ

∫ ∞

0
�(τ) dτ

)
,

log
Si0
Si∞

= βi

(
R1

[
1 − S1∞

N1

]
+ R2

[
1 − S2∞

N2

])
∀ i = 1, 2. (24)
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Note that the final size of the epidemic, the total number of members of the population
infected over the course of the epidemic in patch 1 and 2 are, respectively, N1 − S1∞
and N2 − S2∞ and are often described in terms of the attack rates (1 − S1∞/N1) and
(1 − S2∞/N2), respectively.

3. Variable pathogen shedding rates

We describe a more realistic model that allows the pathogen shedding rates r1 and r2
depend on age of infection of the shedding individual.We need amore complexmodel that
allows the shedding rates decrease to zero. We therefore let Q1(w) and Q2(w) be rates at
which virus is being shed for infectives with age of infection w, and �(c) be the proportion
of infectivity remaining for virus already shed c time units earlier.

We can reasonably assume that infectivities (Q1(τ ) and Q2(τ )) which are functions of
infection age, are effective viruses at time t shed by infectives I1 and I2 with age of infection
τ at time t.

Then, it therefore makes sense to make changes of A1(τ ) = Q1(τ ) and A2(τ ) = Q2(τ )

in the equation for ϕ1 and ϕ2 in Equation (4).
A more general equation for P need to be developed while equations for S1 and S2 from

Equation (4) remain unchanged and the idea follows from [4].
Let the number of individuals with age of infection w at time t be i(t,w), which may

include individuals with zero infectivity who do not infect any more.
Therefore i(t,w) = i(t − w, 0) = −S′

i(t − w).
Consider infectives that are infected at time t−c, 0 ≤ c ≤ ∞ with infection age v, 0 ≤

v ≤ c and contribution of their virus at time t.
At time t−c+v, we have

i(t − c + v, v) = i(t − c, 0) = −S′
i(t − c).

Their shedding rates are Q1(v) and Q2(v), and the viruses remaining at time t are
Q1(v)�(c − v) and Q2(v)�(c − v). We therefore have

P(t) =
∫ ∞

0

∫ c

0
[−S′

1(t − c)]Q1(v)�(c − v) dv dc

+
∫ ∞

0

∫ c

0
[−S′

2(t − c)]Q2(v)�(c − v) dv dc

=
∫ ∞

0

∫ ∞

v

[−S′
1(t − c)]�(c − v) dcQ1(v) dv

+
∫ ∞

0

∫ ∞

v

[−S′
2(t − c)]�(c − v) dcQ2(v) dv

=
∫ ∞

0

∫ ∞

0
[−S′

1(t − z − v)]�(z) dzQ1(v) dv

+
∫ ∞

0

∫ ∞

0
[−S′

2(t − z − v)]�(z) dzQ2(v) dv.
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The general model becomes

S′
1(t) = −β1S1(t)P(t),

ϕ1(t) =
∫ ∞

0
[−S′

1(t − τ)]Q1(τ ) dτ ,

S′
2(t) = −β2S2(t)P(t),

ϕ2(t) =
∫ ∞

0
[−S′

2(t − τ)]Q2(τ ) dτ ,

P(t) =
∫ ∞

0

[∫ ∞

0
[−S′

1(t − z − v)]�(z) dz
]
Q1(v) dv

+
∫ ∞

0

[∫ ∞

0
[−S′

2(t − z − v)]�(z) dz
]
Q2(v) dv.

(25)

The equation for P can be substituted into equations for S1 and S2 in themodel (25) to have
two single equations for S1 and S2 as

S′
1(t) = −β1S1(t)

(∫ ∞

0

[∫ ∞

0
[−S′

1(t − z − v)]�(z) dz
]
Q1(v) dv

+
∫ ∞

0

[∫ ∞

0
[−S′

2(t − z − v)]�(z) dz
]
Q2(v) dv

)
,

and

S′
2(t) = −β2S2(t)

(∫ ∞

0

[∫ ∞

0
[−S′

1(t − z − v)]�(z) dz
]
Q1(v) dv

+
∫ ∞

0

[∫ ∞

0
[−S′

2(t − z − v)]�(z) dz
]
Q2(v) dv

)
.

3.1. Reproduction numberR0

Wewill find the basic reproduction number for Equation (25) by beginningwith new infec-
tives and calculating the virus shed over the period of the infection. The effective viruses
at time t are given as

∫ t

0
Qi(w)�(t − w) ds =

∫ t

0
Qi(t − c)�(c) dc ∀ i = 1, 2,

and total infectivities over the period of the infection are
∫ ∞

0

∫ t

0
Qi(t − c)�(c) dc dt =

∫ ∞

0

[∫ ∞

c
Qi(t − c) dt

]
�(c) dc

=
∫ ∞

0

[∫ ∞

0
Qi(v) dv

]
�(c) dc

=
∫ ∞

0
Qi(v) dv

∫ ∞

0
�(c) dc ∀ i = 1, 2.
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The basic reproduction number can therefore be written as

R0 = β1N1

∫ ∞

0
Q1(v) dv

∫ ∞

0
�(c) dc + β2N2

∫ ∞

0
Q2(v) dv

∫ ∞

0
�(c) dc, (26)

and we have

R0 = β1R1 + β2R2,

where

R1 = N1

∫ ∞

0
Q1(v) dv

∫ ∞

0
�(c) dc and R2 = N2

∫ ∞

0
Q2(v) dv

∫ ∞

0
�(c) dc,

and follows from Theorem 2.4.

3.2. The initial exponential growth rate

The linearization of Equation (25) at the equilibrium S1 = N1, S2 = N2, ϕ1 = ϕ2 = 0,
P=0, are

S′
1(t) = −β1N1

(∫ ∞

0

[∫ ∞

0
[−S′

1(t − z − v)]�(z) dz
]
Q1(v) dv

+
∫ ∞

0

[∫ ∞

0
[−S′

2(t − z − v)]�(z) dz
]
Q2(v) dv

)
,

and

S′
2(t) = −β2N2

(∫ ∞

0

[∫ ∞

0
[−S′

1(t − z − v)]�(z) dz
]
Q1(v) dv

+
∫ ∞

0

[∫ ∞

0
[−S′

2(t − z − v)]�(z) dz
]
Q2(v) dv

)
.

The characteristic equation is a situation where by the linearization have solutions S1(t) =
S10 eλt and S2(t) = S20 eλt , which are

β1N1

(∫ ∞

0
e−λvQ1(v) dv

∫ ∞

0
e−λc�(c) dc +

∫ ∞

0
e−λvQ2(v) dv

∫ ∞

0
e−λc�(c) dc

)
= 1,

(27a)

β2N2

(∫ ∞

0
e−λvQ1(v) dv

∫ ∞

0
e−λc�(c) dc +

∫ ∞

0
e−λvQ2(v) dv

∫ ∞

0
e−λc�(c) dc

)
= 1.

(27b)

Theorem 3.1: The disease dies out and there is no epidemic when λ < 0 (i.e. whenR0 < 1)
in Equation (27), but disease persists when λ > 0 (i.e. whenR0 > 1) which corresponds to
an epidemic.

Combining Equations (26) and (27) we have

R0 =
∫ ∞
0 Q1(v) dv

∫ ∞
0 �(c) dc + ∫ ∞

0 Q2(v) dv
∫ ∞
0 �(c) dc∫ ∞

0 e−λvQ1(v) dv
∫ ∞
0 e−λc�(c) dc + ∫ ∞

0 e−λvQ2(v) dv
∫ ∞
0 e−λc�(c) dc

.
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3.3. The final size relation

Integrate the equations for S1 and S2 in Equation (25) to obtain the final size relation,

log
Si0
Si∞

= βi

∫ ∞

0
P(t) dt. (28)

But we know that∫ ∞

0
P(t) dt =

∫ ∞

0

∫ ∞

0

[∫ ∞

0
[−S′

1(t − z − v)]�(z) dz
]
Q1(v) dv dt

+
∫ ∞

0

∫ ∞

0

[∫ ∞

0
[−S′

2(t − z − v)]�(z) dz
]
Q2(v) dv dt.

Interchange the order of integration, integrate with respect to t to obtain
∫ ∞

0
P(t) dt =

∫ ∞

0

∫ ∞

0

[∫ ∞

0
[−S′

1(t − z − v) dt
]

�(z) dzQ1(v) dv

+
∫ ∞

0

∫ ∞

0

[∫ ∞

0
[−S′

2(t − z − v) dt
]

�(z) dzQ2(v) dv

=
∫ ∞

0

∫ ∞

0
[S1(−z − v) − S1∞]�(z) dzQ1(v) dv

+
∫ ∞

0

∫ ∞

0
[S2(−z − v) − S2∞]�(z) dz Q2(v) dv

=
∫ ∞

0

∫ ∞

0
[N1 − S1∞]�(z) dzQ1(v) dv

+
∫ ∞

0

∫ ∞

0
[N2 − S2∞]�(z) dzQ2(v) dv

= [N1 − S1∞]
∫ ∞

0
�(z) dz

∫ ∞

0
Q1(v) dv

+ [N2 − S2∞]
∫ ∞

0
�(z) dz

∫ ∞

0
Q2(v) dv

= R1

[
1 − S1∞

N1

]
+ R2

[
1 − S2∞

N2

]
. (29)

Using Equation (29) in Equation (28) and by Lemma (2.1), we obtain,

log
S10
S1∞

= β1

(
R1

[
1 − S1∞

N1

]
+ R2

[
1 − S2∞

N2

])
,

log
S20
S2∞

= β2

(
R1

[
1 − S1∞

N1

]
+ R2

[
1 − S2∞

N2

])
.

(30)

4. Heterogeneousmixing and indirect transmission with residence time

Here we examined SIRP two patch model which included an explicit travel rates between
patches. We divide the environment into two patches and population in each patch is
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divided into Susceptible, Infective and Removed with different pathogens in each patches.
Thismodel considers patcheswith residents who spend some of their time in another patch
or different environment more probable to allow disease transmission.

The model is considered for a short period of time and therefore assumes no recruit-
ment, birth or natural death. We assume that the rate of travel of individuals between the
two patches depends on the status of the disease, and individuals do not change disease
status during travel. The disease is assumed to be transmitted by horizontal incidence
βiSiPi(i = 1, 2)with the same removed rate and infectivity loss rate for infected individuals
in both patches. We assume that one of the patches has a larger contact rate β2 > β1, with
short term travel between the two patches and that each patch has a constant total pop-
ulation with p11 + p12 = 1, p21 + p22 = 1, where pij(i, j = 1, 2) is the fraction of contact
made by patch i residents in patch j [2, 10].

A Lagrangian perspective is followed to keep track of individual’s place of residence at
all times. This model with direct transmission of infection is the starting point of [6, 10].

2-Patch SIRP model with residence time

S′
1 = −β1p11S1(p11P1 + p21P2) − β2p12S1(p12P1 + p22P2),

I′1 = β1p11S1(p11P1 + p21P2) + β2p12S1(p12P1 + p22P2) − αI1,

R′
1 = αI1,

P′
1 = r1I1 − δP1,

S′
2 = −β1p21S2(p11P1 + p21P2) − β2p22S2(p12P1 + p22P2),

I′2 = β1p21S2(p11P1 + p21P2) + β2p22S2(p12P1 + p22P2) − αI2,

R′
2 = αI2,

P′
2 = r2I2 − δP2,

(31)

with initial conditions

S1(0) = S10, S2(0) = S20, I1(0) = I10, I2(0) = I20, P1(0) = P10, P2(0) = P20,

R1(0) = R2(0) = 0,

in a population of constant total size N = N1 + N2 where

N1 = S1 + I1 + R1 = S10 + I10 and N2 = S2 + I2 + R2 = S20 + I20.

Since this is an indirect transmission model, each of the p11S1 susceptibles from Group 1
present in patch 1 can be infected by pathogens shed by members of Group 1 and Group 2
present in patch 1. Similarly, each of the p12S1 susceptibles from Group 1 present in patch
2 can be infected by pathogens shed by members of Group 1 and Group 2 present in patch
2 (Table 2) . The infective proportion in patch 1 is given by

p11P1(t) + p21P2(t) and in patch 2 is p12P1(t) + p22P2(t).

Therefore, the rate of new infections of members of patch 1 in patch 1 is

β1p11S1(p11P1 + p21P2).
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Table 2. Model variables, parameters and their descriptions.

Variables Description

Si Population of susceptibles in patch i
Ii Population of infectives in patch i
Ri Population of removed in patch i
Pi Pathogens shed by infectives in patch i

Parameters Description
βi Effective contact rate in patch i
α Removed rate for infected individuals
ri Pathogen shedding rate for infected individuals
δ Infectivity loss rate for pathogen.
p11 The fraction of contact made by patch 1 residents in patch 1
p12 The fraction of contact made by patch 1 residents in patch 2
p21 The fraction of contact made by patch 2 residents in patch 1
p22 The fraction of contact made by patch 2 residents in patch 2

The rate of new infections of members of patch 1 in patch 2 is

β2p12S1(p12P1 + p22P2).

Similarly, the rate of new infections of members of patch 2 in patch 1 is

β1p21S2(p11P1 + p21P2).

The rate of new infections of members of patch 2 in patch 2 is

β2p22S2(p12P1 + p22P2).

From the sum of the equations for S1, S2, I1 and I2 in Equation (31), we have

(S1 + I1)′ = −αI1 ≤ 0.

We can see that (S1 + I1) decreases to a limit, and by Lemma 2.1 we could show that its
derivative approaches zero, from which can be deduced that

I1∞ = lim
t→∞ I1(t) = 0.

Integrate this equation to give

α

∫ ∞

0
I1(t) dt = S1(0) + I1(0) − S1(∞) = N1(0) − S1(∞),

∫ ∞

0
I1(t) dt = N1(0) − S1(∞)

α
, (32)

implying that
∫ ∞
0 I1(t) dt < ∞. Similarly, (S2 + I2)′ = −αI2 and we have

∫ ∞

0
I2(t) dt = N2(0) − S2(∞)

α
, (33)

implying that
∫ ∞
0 I2(t) dt < ∞.
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4.1. Reproduction numberR0

Note that we have four infectious classes I1,P1, I2,P2, and the Jacobian matrix of Fi =
(F1,F2,F3), evaluated at the disease-free equilibrium point,

DFE = (S10, 0, 0, 0, S20, 0, 0, 0) = (N1(0), 0, 0, 0,N2(0), 0, 0, 0) is given by

F =
(

∂Fi

∂xj

)
i,j

=

⎛
⎜⎜⎝
0 (β1p211 + β2p212)N1(0) 0 (β1p11p21 + β2p12p22)N1(0)
0 0 0 0
0 (β1p11p21 + β2p12p22)N2(0) 0 (β1p221 + β2p222)N2(0)
0 0 0 0

⎞
⎟⎟⎠ ,

where xj = I1,P1, I2,P2 for j = 1, . . . , 4 and i = 1, . . . , 4.
The jacobianmatrix ofVi = (V1,V2,V3), evaluated at the disease-free equilibriumpoint

DFE is

V =
(

∂Vi

∂xj

)
i,j

=

⎛
⎜⎜⎝

α 0 0 0
−r1 δ 0 0
0 0 α 0
0 0 −r2 δ

⎞
⎟⎟⎠ .

The dominant eigenvalues of FV−1 which is the spectral of thematrix FV−1 gives the basic
reproduction number for Epidemic from the model (31) as;

R0 = � + � ± √
(� + �)2 − 4β1β2(p11p22 − p12p21)2N1(0)N2(0)r1r2

2αδ
, (34)

where

� = (β1p211 + β2p212)N1(0)r1,

and

� = (β1p221 + β2p222)N2(0)r2.

Note that in the special case of proportionate mixing where we have p11 = p21 and p12 =
p22, so that p12p21 = p11p22, the simplified basic reproduction number from Equation (34)
is given as

R0 = (β1p211 + β2p222)N1(0)r1 + (β1p211 + β2p222)N2(0)r2
αδ

. (35)

Similarly for the case of no movement between patches, we have:

p11 = p22 = 1, p12 = p21 = 0,

so that the simplified basic reproduction number from Equation (34) is given as

R0 = ρ(FV−1) = max
(
r1β1N1

αδ
,
r2β2N2

αδ

)
. (36)
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R0 in Equation (36) can be written as

R0 = max(R1,R2),

whereR1 = r1β1N1/αδ (the reproduction number for patch 1) andR2 = r2β2N2/αδ(the
reproduction number for patch 2). Theorem 2.4 gives the summary of this analysis.

4.2. The initial exponential growth rate

The initial exponential growth rate is a quantity that can be compared with experimen-
tal data [7, 12]. We can linearize the model (31) about the disease-free equilibrium S1 =
N1, I1 = R1 = P1 = 0, S2 = N2, I2 = R2 = P2 = 0 by letting u1 = N1 − S1, u2 = N2 − S2
to obtain the linearization

u′
1 = β1p11N1(p11P1 + p21P2) + β2p12N1(p12P1 + p22P2),

I′1 = β1p11N1(p11P1 + p21P2) + β2p12N1(p12P1 + p22P2) − αI1,

R′
1 = αI1,

P′
1 = r1I1 − δP1,

u′
2 = β1p21N2(p11P1 + p21P2) + β2p22N2(p12P1 + p22P2),

I′2 = β1p21N2(p11P1 + p21P2) + β2p22N2(p12P1 + p22P2) − αI2,

R′
2 = αI2,

P′
2 = r2I2 − δP2.

(37)

The equivalent characteristic equation be reduced to a product of four factors and a fourth
degree polynomial equation

λ4det

⎛
⎜⎜⎝

−α − λ (β1p211 + β2p212)N1 0 (β1p11p21 + β2p12p22)N1
r1 −δ − λ 0 0
0 (β1p11p21 + β2p12p22)N2 −α − λ (β1p221+β2p222)N2
0 0 r2 −δ − λ

⎞
⎟⎟⎠= 0.

The initial exponential growth rate is the largest root of this fourth degree equation and it
reduces to

G(λ) = (α + λ)2(δ + λ)2 − (α + λ)(δ + λ)((β1p211 + β2p212)r1N1

+ (β1p221 + β2p222)r2N2) + β1β2r1r2N1N2(p11p22 − p12p21)2.

We can write the initial exponential growth rate in a simplified form using Equation (35)
as

G(λ) = (α + λ)2(δ + λ)2 − (α + λ)(δ + λ)αδR0 = 0. (38)

Measuring the initial exponential growth rate is possible, and if the measured value is ξ ,
then from Equation (38) we obtain

(α + ξ)2(δ + ξ)2 − (α + ξ)(δ + ξ)αδR0 = 0, (39)



394 J. F. DAVID

and we have

R0 = (α + ξ)(δ + ξ)

αδ
. (40)

Equation (40) gives a way to estimate the basic reproduction number from known quan-
tities, and ξ = 0 in Equation (40) corresponds to R0 = 1, which confirms the proper
threshold behaviour for the calculatedR0. Estimating the final epidemic size after an epi-
demic has passed is possible, and this makes it feasible to choose values of α and β1β2 that
satisfy Equation (39) such that the simulations of the model (31) give the observed final
size.

In the case of no movement, the initial exponential growth rate is given as

G(λ) = (α + λ)2(δ + λ)2 − (α + λ)(δ + λ) (β1r1N1 + β2r2N2) + β1β2r1r2N1N2,

and simplified using Equation (36) as

G(λ) = (α + λ)2(δ + λ)2 − (αδ)(α + λ)(δ + λ) (R1 + R2) = 0. (41)

Measuring the initial exponential growth rate is also possible, and if the measured value is
ξ , then from Equation (41) we obtain

(α + ξ)2(δ + ξ)2 − (αδ)(α + ξ)(δ + ξ) (R1 + R2) = 0, (42)

and we have

R1 + R2 = (α + ξ)(δ + ξ)

αδ
. (43)

On the one hand, if R1 > R2, it means disease is more effectively spread in patch 1 and
infection in patch 2 is therefore driven to extinction. Then the basic reproduction number
from Equation (43) becomes

R0 = R1 = (α + ξ)(δ + ξ)

αδ
. (44)

On the other hand, ifR2 > R2, it means disease is more effectively spread in patch 2 and
infection in patch 1 is therefore driven to extinction. Then the basic reproduction number
from Equation (43) becomes

R0 = R2 = (α + ξ)(δ + ξ)

αδ
. (45)

Equations (44) and (45) give a way to estimate the basic reproduction number from known
quantities, and by Theorem 2.3 and ξ = 0 in either of these equations corresponds toR0 =
1, which confirms the proper threshold behaviour for the calculated R0. Estimating the
final epidemic size after an epidemic has passed is also possible, and this makes it feasible
to choose values of α and β1β2 that satisfy Equation (42) such that the simulations of the
model (31) give the observed final size when there is no movement between patches.
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4.3. The final size relation

Integrate the equation for S1 and S2 in Equation (31);

log
S10
S1∞

= β1p211

∫ ∞

0
P1(t) dt + β1p11p21

∫ ∞

0
P2(t) dt

+ β2p212

∫ ∞

0
P1(t)dt + β2p12p22

∫ ∞

0
P2(t) dt,

log
S20
S2∞

= β1p11p21
∫ ∞

0
P1(t) dt + β1p221

∫ ∞

0
P2(t) dt

+ β2p12p22
∫ ∞

0
P1(t) dt + β2p222

∫ ∞

0
P2(t) dt.

(46)

Integrate the linear equation for P1 and P2 in Equation (31) to have

P1(t) = P10 e−δt + r1
∫ t

0
e−δ(t−s)I1(s) ds,

P2(t) = P20 e−δt + r2
∫ t

0
e−δ(t−s)I2(s) ds.

(47)

Next, we need to show that

lim
t→∞

∫ t

0
e−δ(t−s)Ii(s) ds = lim

t→∞

∫ t
0 e

δsIi(s) ds
eδt

= 0 ∀ i = 1, 2. (48)

This is clear if the integral in the numerator of (48) is bounded, and if unbounded,
l’Hospital’s rule shows that the limit is limt→∞ Ii(t)/δ = 0 [4]. And Equation (47) implies
that

Pi∞ = lim
t→∞ Pi(t) = 0.

But integrate Equation (47), interchange the order of integration, and use Equations (32)
and (33) to have ∫ ∞

0
P1(t) dt = r1

δ

∫ ∞

0
I1(t) dt,

∫ ∞

0
P2(t) dt = r2

δ

∫ ∞

0
I2(t) dt.

(49)

implying that
∫ ∞
0 Vi(t) dt < ∞.

Substitute Equation (49) into Equation (46) to have

log
S10
S1∞

= β1p211
r1
δ

∫ ∞

0
I1(t) dt + β1p11p21

r2
δ

∫ ∞

0
I2(t) dt

+ β2p212
r1
δ

∫ ∞

0
I1(t) dt + β2p12p22

r2
δ

∫ ∞

0
I2(t) dt,

log
S20
S2∞

= β1p11p21
r1
δ

∫ ∞

0
I1(t) dt + β1p221

r2
δ

∫ ∞

0
I2(t) dt

+ β2p12p22
r1
δ

∫ ∞

0
I1(t) dt + β2p222

r2
δ

∫ ∞

0
I2(t) dt.

(50)
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and now substituting Equations (32) and (33) into Equation (50) and using Lemma 2.1,
gives the final size relation

log
S10
S1∞

= (β1p211 + β2p212)
(
r1N1

αδ

) {
1 − S1(∞)

N1

}

+ (β1p11p21 + β2p12p22)
(
r2N2

αδ

) {
1 − S2(∞)

N2

}
,

log
S20
S2∞

= (β1p11p21 + β2p12p22)
(
r1N1

αδ

) {
1 − S1(∞)

N1

}

+ (β1p221 + β2p222)
(
r2N2

αδ

) {
1 − S2(∞)

N2

}
,

(51)

which implies Si∞ > 0.
Equation (51) can as well be written as⎛

⎜⎝
log

S10
S1∞

log
S20
S2∞

⎞
⎟⎠ =

(
M11 M12
M21 M22

) ⎛
⎜⎝
1 − S1(∞)

N1

1 − S2(∞)

N2

⎞
⎟⎠ , (52)

where

M =

⎛
⎜⎝ (β1p211 + β2p212)

r1N1

αδ
(β1p11p21 + β2p12p22)

r2N2

αδ

(β1p11p21 + β2p12p22)
r1N1

αδ
(β1p221 + β2p222)

r2N2

αδ

⎞
⎟⎠ .

In a situation where we have no movement between patches, the final size relation can be
written as

log
S10
S1∞

=
(

β1r1N1

αδ

) {
1 − S1(∞)

N1

}
,

log
S20
S2∞

=
(

β2r2N2

αδ

) {
1 − S2(∞)

N2

}
,

(53)

which implies Si∞ > 0.
Equation (53) can as well be written as⎛

⎜⎝
log

S10
S1∞

log
S20
S2∞

⎞
⎟⎠ =

(M11 M12
M21 M22

) ⎛
⎜⎝
1 − S1(∞)

N1

1 − S2(∞)

N2

⎞
⎟⎠ , (54)

where

M =

⎛
⎜⎝

β1r1N1

αδ
0

0
β2r2N2

αδ

⎞
⎟⎠ .

Note that the eigenvalues of FV−1 (the next generation matrix) is the same as the eigen-
values of the matrices M (the final epidemic size) and M (the final epidemic size for no
movement between patches). In a special case where the epidemiological system cannot be
controlled, we have the dominant eigenvalue to beR0.
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Table 3. Parameter values and their sources.

Symbol Value References

N1(0) 200
N2(0) 300
β1 0.3 [10]
β2 1.2 [10]
α 1.87 [19]
r1 0.1 [19]
r2 1 [19]
δ 0.25

Figure 1. Dynamics of I1 and I2 whenwe vary p11, p12, p21, p22 and have nomovement (p11 = p22 = 1,
p12 = p21 = 0), half populations moving (p11 = p22 = p12 = p21 = 0.5), and all populations moving
(p11 = p22 = 0, p12 = p21 = 1). The figure on the left panel shows that the prevalence in patch 1
reaches its highest when in extreme mobility case (blue line) and is lowest when there is no mobility
between patches (red line). The figure on the right panel show the opposite of this scenario in patch 2
(high risk). (a) The plot of Infected individuals (I1) in patch 1 and (b) The plot of Infected individuals (I2)
in patch 2.

4.4. Numerical simulations

We run simulations to gain deeper understanding of the role of residence time on disease
dynamics.

We simulate for Susceptible populations S1(0) = 199 in patch 1 with one infective and
similarly for S2(0) = 298 in patch 2 with two infective. We assume that patch 2 has higher
risk with β2 = 1.2 and patch 1 has lower risk with β1 = 0.3. We have the parameter values
and their sources in Table 3.

From our simulations in Figure 1, we observe that:

(1) For the case of no movement between patches (no mobility), that is, p11 = p22 = 1
and p12 = p21 = 0, the system behaves as two separated patches where we have the
disease prevalence to be at its highest in patch 2.

(2) For the symmetric case in which p11 = p12 = p21 = p22 = 0.5, the system has the
same level of disease prevalence in both patches.
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(3) The case where everyone move from their patch to the other patch (high mobility),
that is p11 = p22 = 1 and p12 = p21 = 0, the systemhas the highest disease prevalence
in patch 1.

Our numerical results is similar to [10] where direct transmission pathway is consid-
ered as a form of disease spread. Our results show that considering indirect transmission
pathway is of great importance and disease spread may be difficult to control (the case of
cholera) if otherwise, as in Figure 1.

5. Conclusion

In this paper, we proposed and studied an epidemicmodel inwhich infection is transmitted
when viruses are shed and acquired through host (population)-source (environment)-host
(population) in heterogeneous environments. For the three models developed, we calcu-
lated the reproduction number, estimated the initial exponential growth rate and obtained
the reproduction number in terms of parameters that can be estimated. The final size rela-
tion was also analysed to find the number of disease cases and disease deaths in terms of
the model parameters.

We examined an SIVR model with residence times and develop a 2-patch model where
infection risk is as a result of the residence time and other environmental factors. With
this approach, we studied the disease prevalence in heterogeneous environment through
indirect transmission pathways without needing to measure contact rates and our analysis
was also buttressed by numerical results.

Our primary result shows that the number of populations being infected through indi-
rect transmission medium which had been omitted in some other previous works is worth
taking into account. The result of our numerical simulation is similar to one of the results
in [10] in which only direct transmission pathway was considered. We were able to show
how worst the prevalence of a disease could be when the disease transmission is indirect.

We considered indirect transmission of viruses in heterogeneous mixing population,
but considering direct and indirect pathways (the case of Ebola), may give a different/better
insight into the disease prevalence and how accurate treatment will be apportioned.

Despite these limitations, our models can be used to compare disease spread between
two populationswith different contact rates, such as cities against villages, rich against poor
populations and so on. The derivation of the age of infection model could be extended
to include direct transmission pathways. It is also possible to extend the model with the
residence times to incorporate treatment strategies which may reduce the contact rates
and then lower the reproduction number. In addition, it may be more realistic to extend
themodel to incorporatemultiple class of hosts and sources in order to compare the disease
spread among different populations and with different viruses.
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